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Abstract
Acceleration is one of the mechanisms that produces radiation, meaning gravitational waves
should be emitted by accelerating masses. Here we describe the gravitational radiation coming
from a uniformly accelerated particle in both the classical and quantum pictures, using Unruh
modes to decompose the fields. This allows us to study the role of the Unruh effect in both de-
scriptions, and find, like in the electromagnetic and scalar cases, that zero-Rindler-energy modes
(and their associated gravitons) have a fundamental role in the build-up of the radiation content
seen by inertial observers.

Introduction
Since the discovery of the relationship between acceleration and radiation, many physicists have
contributed to improve our understanding of this connection. Classically we know that radiation
is not a covariant concept: the state of motion of the observer determines how radiation will be
perceived [1, and references within]. Our grasp on the quantum aspects of this correspondence
are based on the finding that an accelerated observer will see the Minkowski vacuum as a bath of
particles at a temperature proportional to its proper acceleration [2], what we now call the Unruh
effect. Other developments on Quantum Field Theory in Curved Spacetimes show that for a uni-
formly accelerated charge, the excitation rates reported by an inertial observer agree with those of
an observer co-accelerated with the charge, if and only if the thermal bath is taken into account;
also, surprisingly, the photons appearing in this set-up have zero energy in the Rindler frame [3].
This idea was exploited recently to propose an experimental setup where the quantum radiation
emitted by an accelerated charge thoroughly reproduces Larmor radiation [4]. The authors have
explored the role of zero-Rindler-energy photons in this description and the interplay between the
Unruh effect and classical Larmor radiation in both scalar [5] and vector [6] electrodynamics, and
now have extended the methods used in these studies to the linearized gravitational field ℎ𝑎𝑏 = 𝛿𝑔𝑎𝑏.

Particles accelerated for a finite amount of time
The trajectory of a uniformly accelerated particle of mass 𝑚 in Minkowski spacetime is described
by an hyperbola, which is not a geodesic of this spacetime. Therefore the dynamics of the particle
are governed by a modification of the geodesic equation

̈𝜒 𝑎 + Γ𝑎𝑏𝑐 ̇𝜒 𝑏 ̇𝜒 𝑐 = 𝐹 𝑎(𝜒),

where 𝜒 𝑎(𝜏 ) is the trajectory, and 𝐹 𝑏𝜕𝑏 = 𝑎2(𝑡𝜕𝑡+𝑧𝜕𝑧) = 𝑎𝜕𝜉 is a vector field representing the external
agent responsible for the acceleration. This corresponds to the Euler-Lagrange equation of an action
principle, that, after introducing a compactification parameter 𝐿 and half the time of acceleration 𝑇,
yields the energy-momentum tensor for the particle:
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The physical setup is recovered by making 𝐿 → ∞, and we will give special interest to the case
𝑇 → ∞. The trajectory can be visualized in the figure below.
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Figure:
Conformal diagram of the motion
of the particle. The accelerated part
of the motion is in red and con-
strained to |𝜏 | ≤ 𝑇, while the inertial
parts are in green. The compact-
ification parameter limits the sup-
port of the trajectory to |𝑡 | ≤ 𝐿 and
the limit 𝐿 → ∞ recovers the phys-
ical trajectory (dotted sectors). The
asymptotic past and future Cauchy
hyper-surfaces are in blue, and do
not intersect with the compactified
trajectory.

Traceless and transverse tensor Unruh modes
Taking advantage of the planar symmetry of Rindler and Minkowski spacetime we can apply the
procedure outlined by Kodama et al [7] and define both left and right Rindler modes, alongside with
plane wave modes. A simple analysis shows that these Rindler modes satisfy the same Bogoliubov
transformations than the scalar counterparts of the modes. From this we can define a normalised,
positive energy, and complete set of Unruh modes; these are classified as the vector sector
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and the scalar sector
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where we have used the definition of the scalar Unruh modes
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There have been previous reports of gravitational Rindler modes [8], but these were derived in the
Regge-Wheeler gauge and in a different fashion from ours.

Classical expansion of field in the asymptotic future

We can describe the gravitational perturbation in the asymptotic future (Σ+) using the retarded field
ℎ𝑎𝑏 = 𝑅𝑇𝑎𝑏, obtained using the stress-energy tensor and Green’s function methods. This gravita-
tional perturbation can be expanded in terms of our TT Unruh modes, where we find only the scalar
sector couples with the energy-momentum tensor. In the special case where the acceleration time
is infinite, we computed the coefficients to be
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and therefore the full retarded field is given by
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We can see explicitly from the expression above that only zero-Rindler-energy modes (𝜔 = 0) con-
tribute to build this expression.

Quantum expansion of field in the asymptotic past and future

If we promote the gravitational perturbation and the associated generalized momenta to operators
and impose the canonical equal-time commutation relation between them, we can see that an ob-
server in the asymptotic past will have its own concept of particle, independent of what the future
observes defines as such. This is realized by considering two distinct but equivalent forms of writing
the quantised gravitational perturbation

ℎ̂𝑎𝑏(𝑥) = ℎ̂out𝑎𝑏 (𝑥) + 𝐴𝑇 𝐿𝑎𝑏(𝑥)𝟙̂ = ℎ̂in𝑎𝑏(𝑥) + 𝑅𝑇 𝐿𝑎𝑏(𝑥)𝟙̂,

where ℎ̂out𝑎𝑏 and ℎ̂in𝑎𝑏 are the free homogeneous fields as seen by observers in the future and past, re-
spectively. Each of these has its own vacua, |0Mout⟩ and |0Min⟩, and these can be connected using the S
matrix: |0Min⟩ = ̂𝑆|0Mout⟩, which, if we expand the out-field using tensor Unruh modes, depends on the
coefficients found on the classical expansion, and for the case of infinite acceleration time is given
by
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a superposition of zero-Rindler-energy gravitons. Moreover, the S matrix can be used to show the
in-vacuum is a multimode coherent state of the out-field, i.e.,

𝑎̂out(𝑊 (𝜎 ,s,𝜔k⟂))|0Min⟩ = ⟨𝑊 (𝜎 ,s,𝜔k⟂), 𝑅𝑇𝐿⟩|0Min⟩,

and this allows us to show the expectation value of the out field when the state is prepared as the
vacuum in the past is simply the retarded field:

⟨0Min |ℎ̂
out
𝑎𝑏 |0Min⟩ = 𝑅𝑇 𝐿𝑎𝑏,

therefore all quantum observables will derived from this field, like the gravitational stress-energy
tensor, will average out to their classical counterparts.

Summary

• Extended definition of Unruh modes to spin 2.

• Field decomposed using tensor Unruh modes.

• For infinite acceleration time, only zero-Rindler-energy modes contribute to the field.

• The future vacuum is a multimode coherent state.

• The expectation value of the field in the future corresponds with its classical counterpart.

• For infinite acceleration time, the future observer sees the past vacuum as constructed by past
zero-Rindler-energy gravitons only.

Ongoing research

We are focusing our efforts into analysing how the initial state of the field influences the response
from UdW detectors, using our definition of gravitational Unruh modes.
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