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Abstract
Recent developments in the context of Quantum Field Theory in Curved Spacetimes suggest that the purely

quantum Unruh effect is somehow codified within the classical Larmor radiation; however, further insight on this
connection is needed. Here we present a study where a point charge is uniformly accelerated for a finite amount
of time, to study the resulting radiation field in both the classical and quantum contexts. For this, we extend the
definition of Unruh modes to be vector valued, and use these to decompose the field in both regimes. We find that the
expectation value of the quantum observables in the asymptotic future coincides with their classical counterparts,
provided the state is prepared as the vacuum in the asymptotic past. Moreover, we are able to show that on the limit
where the acceleration time is infinite, the radiation content is solely comprised of zero-energy Rindler photons.
This clarifies the link between the Unruh effect and Larmor radiation, along with the role played by these zero-energy
Rindler photons.

Introduction
The connection between acceleration and radiation was first pointed out by Larmor [1]. The works by
Rohrlich [2, 3] and Boulware [4] further explore and shed light on our understanding of this phenom-
ena in the classical regime, by noting that the state of motion of the observer is intrinsically related to
its ability to detect radiation coming from a charge. In the quantum context, Unruh [5] showed that an
accelerated observer will be bathed by particles at a temperature proportional to its proper acceleration.
This effect is closely related with Bremsstrahlung, as the emission and absorption rate of photons seen
by both inertial and accelerated observers are congruent only when considering this thermal bath, and
these rates are built entirely from zero-energy modes [6]. This connection was strengthened recently,
as there have been propositions of experimental settings to show that Larmor radiation codifies the
Unruh effect [7]. These ideas have been further explored along the role played by zero-Rindler-energy
photons using scalar fields [8]. Here we present a more realistic setting using Maxwell electrodynam-
ics to study the radiation emitted by an accelerated charge. We use Heaviside-Lorentz units for the
electromagnetic quantities and 2 = ℏ = 1.

The 4-current associated to the accelerated charge
We use a charge @ that is moving inertially in Minkowski spacetime [described using coordinates
(C, G, H, I)], then its accelerated with proper acceleration 0 for a finite amount of proper time 2) and
then returns to be inertial (see Fig. 1). We name this physical current as 90∞(G). For calculation
reasons, we compactify the support of the current introducing a parameter ! > 0−140) :

90(G) B 90∞(G) \ (! − |C |), (1)

such that the physical current is recovered in the limit ! →∞.
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Fig. 1: Support of the current. Inertial parts in green and magenta, while the accelerated
part is in red. The compactification of the support corresponds to the solid line; the
dotted one to the limit ! → ∞. The Cauchy surfaces Σ− and Σ+ in blue represent the
asymptotic past and future respectively.

Vector Rindler and Unruh modes
On the left and right Rindler wedges (I < −|C | and I > |C | regions respectively), the solutions of the
massless Klein-Gordon equation are the left and right Rindler modes E!l,k⊥ and E'l,k⊥ respectively.
These are positive energy modes on their respective wedges and can be analytically extended to cover
the entirety of Minkowski spacetime [9, 10]. From the right modes, we can derive two physical
polarizations for the electromagnetic field [6]
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We define left vector Rindler modes by simply replacing ' → ! in the above. Using these we can
define vector Unruh modes
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with ^ = 1, 2; they are positive energy in all of Minkowski spacetime with regards to inertial time C.

Classical Unruh mode expansion
We use these vector Unruh modes to expand the retarded solution on the asymptotic future Σ+
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Using our current (1), the non-zero amplitudes are given by
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where If(^)lk⊥ are the inertial movement contributions. Taking the limit ) → ∞ we can use the result
l−1 sin(l)) → cX(l) and If(^)lk⊥ → 0, then the retarded solution is
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where its clear only zero-Rindler-energy modes contribute to the field. If we compute these inte-
grals on the C > |I | region, we find the 4-potential originally reported by Born [11], up to a gauge
transformation.

Quantum Unruh mode expansion
We can use the Unruh modes to expand the homogeneous part of the field in both the asymptotic past
(Σ−, out field) and the asymptotic future (Σ+, in field), each with their own annihilation and creation
operators and their respective vacua 0̂in( 9) |0"in 〉 = 0̂out( 9 ′) |0"out〉 = 0 [where ( 9) and ( 9 ′) label an appropriate
set of quantum numbers]. Using our Unruh modes for the out field, we connected these vacuum states
using the S-matrix |0"in 〉 = (̂ |0"out〉, which, for the case ) →∞ reads explicitly:

|0"in 〉 =
⊗
k⊥∈R2

4−@
2 | 1(0−1:⊥) |2)tot/(80c3) exp

[
8@

2c

√
2
0
 1(0−1:⊥) 0̂†out(,2(2)

0k⊥ )
]
|0"out〉, (7)

i.e., a superposition of zero-Rindler-energy photons. The S-matrix also allows us to see that the in
vacuum is a multimode coherent state of the out operators
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from where we see that the expectation values of the number operators per transverse momentum is

# (k⊥) B
2∑
f=1

2∑̂
=1

∫ ∞

0
dl 〈0"in |

[
0̂†out(,f(^)

lk⊥ )0̂out(,
f(^)∗
lk⊥ )

]
|0"in 〉 =

@2

40c2

�� 1(0−1:⊥)
��2)tot, (9)

when ) →∞, which is consistent with the detector excitation rates reported by Higuchi et al. [6]. We
also find the expectation values of the 4-potential, Faraday tensor and stress-energy tensor:
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which coincide with their classical counterparts.

Summary of results
• Extended definition of Unruh modes to be vector valued.
• Used these to decompose the potential produced by a charge accelerated a finite amount of time.
• Showed that the field produced by an infinitely accelerated charge only depends on zero-Rindler-
energy modes.

• Connected the descriptions in the asymptotic past and future.
• The future vacuum is a multimode coherent state.
• Observable quantities in the future correspond with the classical counterparts.
• Showed that the future vacuum of the field, when the charge is accelerated an infinite amount of
time, is produced by a bath of past zero-Rindler-energy photons.

Forthcoming Research
Wewish to expand thismethodology to study gravitational radiation, to then analyse how the beginning
state of the system influences the radiation content detected in the asymptotic future.
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